Vol. 4, No. 7

morphalogy of this form is he

X-Ray Data on Forms of LizBN,

Li ₃ BN ₂ (3) (1 atm. f	orm)	Li ₃ BN ₂ (1 atm.	form)	Wentorf's (quenched high pres	phase(2) from sure)	Li3BN2(W) (quenched high pres	* from sure)
<u>d(Å)</u>	<u>I/I</u> 0	<u>d(Å)</u>	<u>I/I</u> 0	<u>d(Å)</u>	<u>1/1</u> 0	<u>d(Å)</u>	<u>I/I</u> o
3.81	m	3.73	10	5.60	m	5.57	20
3.50	S	3.47	50 10	3.50 3.34	mw mw	5.01	70
2.82	vs	2.78	100	3.25	Wms	3.28	5
2.63	S	2.63	30	2.85	W	2.84	15
2.24	W	2.22	5	2.67	m m	2.67	40
2.07	VS	2.07	15	2.50	mw	2.50	5
1.93	W	1.91	5	2.25	m	2.27	10
1.83	VW			2.15	ms vw	2.15	10
1.74	m	1.74	10	2.03	m W	2.03	15
1.64	vs	1.69	20	1.92	w mw	1.93	15 15
1.55	m	1.63	10	1.73	mw VW	1.74	5
1.48	W			1.64	m m	1.65	$10 \\ 10$
1.42	W			1.60	m m	1.61	5
1.40	w			1.50	VW W		
				1.41	W		

* X-ray results from present study; data taken on GE x-ray diffractometer with $CrK\alpha$ radiation; s=strong; m=medium; w=weak; v= very. Additional weak lines at smaller d-spacings are found in published data from references (2) and (3).

that of Li_3AlN_2 and the other members of an isomorphous series(6) formed by substitutions for Al^{3+} and for N^{3-} . Since the structures of these compounds are based on an anti-CaF₂ lattice (i.e., N^{3-} in Ca²⁺ sites), compression along <111> could result in a layer lattice of hexagonal symmetry with layers of close-packed N^{3-} ions perpendicular to the hexagonal "c" axis.

THE SYSTEM Li, BN,

The lath-like morphology of this form is best developed between 1000°C and 1400°C above 40 kb. Quenched runs from the liquid region above the melting curve of the high pressure form are characterized by fine-grained clusters of equant crystals, and the x-ray patterns differ somewhat in peak intensity from those of crystals quenched from the stability region of the phase. These differences appear to be related to a more random orientation obtained when preparing an x-ray slide with the material quenched from the liquid.

 $Li_3BN_2(W)$ is also markedly less soluble in water at room temperature than the low pressure form.

Results and Discussion

General

Our interpretation of the results is summarized in the P-T representation of Fig. 2 in which a large area of stability of $\text{Li}_3\text{BN}_2(W)$ exists. Some aspects of this interpretation need amplification.

FIG. 2

Vol. 4, No. 7

P-T Diagram for the System Li3BN2 Quench data indicated by △,□,o; thermal analysis data by x

A clean separation of a homogeneous sample from the center of a cell in which a temperature gradient existed was sometimes difficult to obtain. Particularly near the P-T conditions where

438